

EMF mitigation of mobile networks Introduction to the actual maximum approach specified in IEC 62232 ED3 (FDIS)

Telecom Paris C2M webinar

Christophe Grangeat (EMF Mitigation Lead) et al. April 26th, 2022 The actual maximum approach specified in IEC 62232 ED3 (FDIS) Outline

- 1. IEC 62232 ED3 standard updates
- 2. Feature validation case study
- 3. Power reduction factor (F_{PR}) evaluation methods
- 4. Conclusion

IEC 62232 ED3 standard roadmap

CDV approved (100%, 09.2021) → FDIS developed (04.2022) → publication mid-2022

IEC 62232 ED3 standard

FDIS content

- IEC 62232 ED3 provides a comprehensive set of methods applicable to 5G and beyond
 - Frequency range extended up to 300 GHz
 - o ICNIRP-2020 compatible
 - o Actual maximum approach specification and validation principles
 - o Improvements for beamforming antennas, in-situ measurements, extrapolation
- Actual maximum approach specification
 - o Description of the implementation process for product installation compliance
 - o Monitoring counters and control feature validation principles have been specified
 - Implementation case studies conducted by vendors, operators and regulators have been included in Annex C

Product compliance Beamforming and beamsteering antennas

Active antenna array used for beamforming and beamsteering Typical 3D beam patterns within the envelope

Typical 3D envelope pattern including all possible beams

[Source: IEC 62232 ED3 FDIS]

Product compliance Simplified compliance boundaries

[Source: IEC 62232 ED3 FDIS]

Product installation compliance \rightarrow The actual maximum approach To address beam variability (in time and space) and nearby environment constraints

Actual maximum approach principles General process

Actual maximum approach principles

Monitoring counters & control features principles when the base station is in operation

From monitoring counters recordings using a reporting time of 15 minutes and an averaging time of 6 minutes Telecom Paris - C2M webinar - 26.04.2022

NOKIA

10 © Nokia 2022

Actual maximum approach principles Monitoring counters & control features validation

Principles

- Monitoring → validate that power and/or EIRP counters provide values consistent with the measured values of power (in conducted mode) or power density/E-field (for over-the-air testing)
- Control \rightarrow validate that the configured threshold is not exceeded during operation

Example of validation over-the-air

In an anechoic room

5G bear station EMF prote G user equipment

On an operational site

Extrapolation of in-situ measurements Case of beamforming & beamsteering antennas

Example of spectrum analyzer views

[Source: IEC 62232 ED3 FDIS]

Extrapolation of in-situ measurements Effective extrapolation – full 3D statistical simulations for 3GPP channel model (TR 38.901)

Nominal and mean effective antenna patterns of broadcast and traffic beams (Commscope RRZZHHTTS4-65B-R7) in 3GPP UMa scenario (boresight direction)

- \rightarrow Nominal gain of traffic beam = 20.8 dBi
- \rightarrow Nominal gain of broadcast beam = 16.7 dBi

CDFs of nominal and effective main beam gains for broadcast and traffic patterns of antenna (Commscope RRZZHHTTS4-65B-R7) and 3GPP UMa propagation

From: K. Bechta, C. Grangeat, J. Du and M. Rybakowski, "Analysis of 5G Base Station RF EMF Exposure Evaluation Methods in Scattering Environments", *IEEE Access*, vol. 10, pp. 7196-7206, 2022

The actual maximum approach specified in IEC 62232 ED3 (FDIS) Outline

- 1. IEC 62232 ED3 standard updates
- 2. Feature validation case study
- 3. Power reduction factor (F_{PR}) evaluation methods
- 4. Conclusion

Monitoring counter & control feature validation case study Test environment

Objective

- Validate monitoring counters
- Validate control feature to ensure the configured threshold is not exceed during operation
- Test results in accordance with IEC 62232 ED3

Monitoring counter & control feature validation case study Measurement equipment & UE positionning

Monitoring counter validation case study Single UE – single segment

Counters and field measurements follow the same profile with load variations

Measurements are within +/- 4 dB of free space values derived from EIRP counters due to the radio propagation environment (reflexions)

Control feature validation case study Single UE – single segment

NOTE $S_{\text{Th}_{\text{FPR}=-xdB}} = S(P_{\text{TXM}} \times F_{\text{TDC}} \times F_{\text{PR}})$, where $F_{\text{PR}} = -x \text{ dB}$

Neither measurements nor counters exceed the configured thresholds

Control feature validation case study Two UEs – Two segments

Controlled vs uncontrolled segments use case

22 Power density dBm/m2 Segment 2 20 [no control] 18 Segment 1 [EIRP control - 6 dB] 16 14 12 10 0% 10% 40% 50% 20% 30% UEx traffic load

EIRP counters variations as expected

Monitoring & control features operate as expected Control feature ensures the configured actual EIRP threshold is not exceed

The actual maximum approach specified in IEC 62232 ED3 (FDIS) Outline

- 1. IEC 62232 ED3 standard updates
- 2. Feature validation case study
- 3. Power reduction factor (F_{PR}) evaluation methods
- 4. Conclusion

Evaluation of the power reduction factor (F_{PR}) from modelling studies Outcome of channel modelling studies using 6-min averaging time (ICNIRP-1998)

Model

3GPP TR 36.873

- UMa: 25 m building, 46 dBm
- UMi: 10 m tower, 41 dBm
- Full buffer, 80% indoor, 4 to 8 floors

Test case configuration

8x8x1, 2 GHz

Tx power statistics

Conservative config UMa, K= 1 and D=60s

- Actual max power
- 95th percentile = <u>26% Pmax</u>

RF compliance

Actual exposure vs. envelope

Compliance distances divided by a factor 2 using the actual maximum power

[from P. Baracca et al., "A Statistical Approach for RF Exposure Compliance Boundary Assessment in Massive MIMO Systems" https://arxiv.org/abs/1801.08351 & IEC TR62669] νισκιδ

Evaluation of the power reduction factor (F_{PR}) from modelling studies Impact of the averaging time window: 30-min avg (US & ICNIRP-2020) vs. 6-min avg (ICNIRP-1998)

Evaluation of the power reduction factor (F_{PR}) From operational base station monitoring analytics

Configurable power reduction factor (F_{PR})

Acceptable percentile

Time variation of the actual EIRP

CDF of the actual EIRP The actual maximum approach specified in IEC 62232 ED3 (FDIS) Outline

- 1. IEC 62232 ED3 standard updates
- 2. Feature validation case study
- 3. Power reduction factor (F_{PR}) evaluation methods
- 4. Conclusion

Introduction to the actual maximum approach specified in IEC 62232 ED3 Conclusion

- IEC 62232 ED3 CDV (Sept'2021) approved by 100% of national committees
 - 18 NCs in favour (Europe, AMEA, APAC, Americas)
- IEC 62232 ED3 FDIS
 - Provides a comprehensive set of methods applicable to 5G and beyond
 - Specifies the actual maximum approach for product installation compliance taking into account the beam variability (in time and space) and nearby environmental constraints
 - Monitoring counters and control features supporting the implementation of the actual maximum approach are specified, operational and validated
- IEC 62232 ED3 publication is expected by mid-2022

